

Virtual/embedded water content

• WHAT IS IT? Virtual/ embedded water refers to the water needed for the production of a crop [Crop water requirement (m3/ha) / Crop yield (ton/ha)]. Origin of the term...

• WHAT DOES IT TELL US? It tells us how much water is used for crop growth under different growing scenarios and in different regions. It can also show a nations dependency on other nations for food and fibre products and can also estimate water 'footprints' by evaluating the water content of imports and exports.

Embedded water content of various items (world averages)

•	1 kg wheat	1 m3
•	1 kg rice	3 m3
•	1 kg milk	1 m3
•	1 kg cheese	5 m3
•	1 kg beef	15 m3
•	1 cotton t-shirt	4000 litres
•	1 cup of coffee	140 litres
•	1 glass of beer	75 litres
•	1 sheet of A4 paper	10 litres
•	1 hamburger	2400 litres

Green beans and flower study

- Green (fine) beans from Zambia, Kenya and Egypt to UK K=15,524 E=2,834 Z=2,362 (2000-2004 t/yr avg.)
- Flowers from Lake Naivasha in Kenya (11,500 t/yr avg.)

Results will show

- Total, blue & green water use
- Non-evaporative VW content
- Trade volumes
- Water quality issues?
- Explanatory text for methodology

	Blue	Green	Total	Non-Evaporative
Kenya (m3/ton)	3,320	1,295	4,614	2,253
(million m3)	51.5	20.1	71.6	35
Egypt (m3/ton)	3,517	0	3,517	3,218
(million m3)	10	0	10	9.1
Zambia (m3/ton)	4,936	958	5,894	3,729
(million m3)	11.7	2.3	13.7	8.7

Considerations

- Focusing on one crop/product may not be sufficient
- Studies should be specific
- Data demanding
- Linking water quality/quantity issues directly to agricultural use can sometimes be difficult...e.g. Lake Naivasha
- Regional or national studies can tell larger stories
- The UK water dependency on Kenya for example, may be more revealing and interesting
- Evaluating water use and water returns (\$) may help to focus on opportunity costs and better uses of water resources for development
- Environmental flows need to be considered
- Getting water issues on the table and in context is essential for making future development strategies work

